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/ SUMMARY

I is 'hown that a non-separate arithmetic code that
preserves bI th addition and multiplication must be an AN code
where the nerator A is an idempotent element of the ring
being used An idempotent element is one that satisfies the
equation x i x. Given this type of code, its ability to
detect errors in arithmetic expressions is explored and shown
to be poor, due to error masking in multipliers.

The constraints placed on a non-separate multiplication-
preserving arithmetic code that avoids such problems are

discussed. The simplest code satisfying these conditions
turns out to be an AN+B code where both A and B are idempotent
elements. Conditions for the existence of this type of code
are given along with a list of examples. The fault tolerance
provided by these codes is then considered for a specific
example. . .
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1. IN CON

There has been a lot of interest, in recent years, in the design of fault-

tolerant arithmetic circuits. This is primarily due to various side-effects of

the increasing component densities to be found in modern integrated circuits

(VLSI, VSI etc.). Ageing effects and transient malfunctions i1] as veil as

production faults 121131 can contribute to the failure of a device. The smaller

the feature size is, hovever, the larger the effect of a given fault. Thus high

density integrated circuits face the prospect of lover production yields and

reduced reliability in service. It is also becoming more difficult to test

integrated circuits, as the increase in component density alloys much more com-

plex circuits to be fabricated.

Whereas reliability has alvays been a goal in the design of electronic

circuits, there is nov also a need to actively design for increased production

yields and reduced testing times. If this is not achieved the component cost of

VLSI circuits could be prohibitively large. One solution to all three problems

is to incorporate redundancy into the circuit and make the circuit fault

tolerant (vhich also implies self-testing). Fault-tolerant arithmetic 141 is one

of the many different approaches to the topic of fault-tolerance.

First Diamond [51 and Brovn [6] and then others (see [71 p86 ) investigated

the use of error-correcting AN-codes to detect and correct errors. The majority

of this york has been directed tovards the protection of the addition operation

and the theory is extensive (7]. Multiplication can, of course, be thought of as

a series of additions and thus, in theory, be protected by the same techniques.

This hovever means that only one of the operands can be in encoded form, for the

other operand is used to control this sequence of additions. This latter process

is unlikely to commute vith the encoding function of an addition preserving code

and thus this operand can not be encoded. Hence errors can only be detected in

one of the tvo operands using this method. More significantly, this approach

limits the application of AN codes to individual fault tolerant adder or multip-

lier circuits. The environment of modern integrated circuits (see above) means,

hovever, that such an approach is unlikely to york.

Arithmetic error-correcting codes vere initially conceived as a general-

Isation of the very successful error-correcting data transmission codes (81191.

There are many parallels betveen the tvo types of code (17] ch.8) but a signif-

icant difference is the fact that the encoding and decoding circuitry for arith-

metic codes may itself be prone to errors. In the data transmission problem

(figure 1) the assumption is that the only point vhere the data can be corrupted

is the communications channel. Thus the encoder and decoder circuitry can be as
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complex as desired, subject only to practical requirements (i.e. component cost,

through-put, etc.), and still function correctly.

-Z "I'-'- CHANEL L--"I"- DTN

->- > > ........................
;;TA --. A --- t--- DATA
IN JOUT

NOISE

En. - E-C code encoder
Tx. - channel transmitter
Rx. - channel receiver
De. - E-C code decoder

Figure 1. Error Protected Communication Channel.

In the case of arithmetic circuits (figure 2), the need for error-correction

arises because of imperfections in the fabrication of the circuits 12][3] and

the various fault-inducing physical effects that occur during the life-time of

the device [1). Thus not only will the arithmetic circuit (the adder in figure

2) be prone to faults but so also will any other piece of circuitry (e.g. the

decoder). This, given a uniform distribution of faults throughout the circuitry,

creates a special problem. If the error-correcting code is such that the encoder

and/or decoder is more complex than the circuit it is supposed to be protecting

then it is more likely that a fault will occur in the encoder and/or decoder

than in the original circuit.

FAULTS
V

DATA + > i -D
IN __> > ^ ^ DA_>-:p- A OUT

I I
A FAULTS FAULTSI

FAULTS
En. - E-C code encoder

- adder
Figure 2. Fault Tolerant Arithmetic Circuit. De. - E-C code decoder

A lot of the york done to date has concentrated on the error detection/

correction properties of the codes and has tended to ignore this rather funda-

mental problem. One solution is to build fault-tolerant encoders and decoders

us Ma the techniques of self-checking circuits 1101. The level of complexity of
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such circuits may well be limited1  by the need to make them self-checking.

Another option would be to use a replicating technique like THR [11] but this

J can be expensive, in terms of hardware, for complex circuits. An alternative

scheme is, perhaps, to ensure that the encoder and decoder circuitry is

relatively small compared to the circuit being protected. In which case,

although it is still possible for the encoder and/or decoder to become faulty,

in all probability it will be the arithmetic circuits that fail first. Abraham

112) has recently introduced Just such an error protection scheme, which he

calls "algorithm fault-tolerance". To date 113][14][15][16] this type of schemeh only been applied to the protection of systolic arrays that perform matrix

=m Il lations.

-In - this paper considerjt4+-thrd approach and addres',~the problem of

classification of error-detecting codes that can protect large arithmetic

expressions involving only addition and multiplicatio0 correctly

circuits that implement such expressions., In such a system t!1TffUTT the inputs

to the arithmetic circuit are first encoded, then manipulated in the required

manner (multiplications and additions) amd finally the outputs are checked for

the presence of an error. Such a scheme would be eminently suitable for Digital

Signal Processing applications where most of the computation reduces to series

of multiplications and additions. - -r
CB

E D
DATA n e DATA

IN c 1 8 E a c OUT

d d

Figure 3. Algorithmic Error Protection. > ERROR
FLAG

In order for it to be possible to check this type of arithmetic expression it

is necessary for the error-detecting code to preserve the operations of addition

and multiplication. It is well known (171 section 3.3) that if an addition

preserving code is a separate code (i.e. with independent information and check

1. A better understanding of the techniques of totally self checking circuits is

required before a definitive statement can be made.3

1... A-etrudrtnigo thtchiqe of toal sel checkin iritsI is~ l III !



parts) then it must be, to vithin isomorphism, a residue code. Such codes also

preserve multiplication. The properties of residue codes are well known 1? and

not considered here, except to note that in principle they require a specialised

Implementation vith separate information and check circuitry. This may or may

not be a dravback depending on the application. Certainly the need for a

spetialised architecture precludes the use of separate codes for non-intrusive,

real-time testing applications.

In section 2 we derive the form of a non-separate multiplication/addition

preserving arithmetic code and show that the error protection ability of such a

code is poor due to error masking in multipliers. In section 3 we consider the

requirements placed on a non-separate arithmetic error detecting code by the

need to avoid error masking in the multiplication process. The types of error to

be found in a multiplier are discussed and a set of constraints thus imposed on

the code is found. The theoretical properties of the simplest code to satisfy

these constraints are studied in section 4 and some examples are given. Using a

specific example, the fault tolerance provided by this type of code is

considered in section 5 and the results of some computer simulations are

presented in section 6.

2. NULTIPIJCATION/ADDITION PRESERVING ARITNTIC CODES

A multiplication/addition preserving arithmetic code is a redundant encoding

of a finite set of integers (Zn say) such that their arithmetic structure is

preserved. It is usual 171 to consider the arithmetic to be modulo the integer n

(n.2b  for two's complement, n-2 -l for one's complement) in which case the set

Zn can be considered to be a ring [171. As the encoded integers are to be manip-

ulated by a computer, or similar dedicated hardware, they too will be elements

of some integer ring (Zm, m>n, say). In the appendix (subsection 11.1) we show

that this leads to the result that the encoding function, for an integer x, has

to be of the form Ax, where A is such that A2 - A MOD m (i.e. an idempotent: see

subsection 11.2).

Following standard coding theory 171, we define an "error" to be a non-zero

difference between a variable's actual value and the correct one. The term

"fault" is used to mean a physical failure which then results in an error, in

one or more variables.

The ability of AN codes to detect, and correct, errors in addition is well

documented 17J, so here we only consider the process of multiplication. Figure 4

shows the situation where the each input to a multiplier consist of a valid

codeword and an error (e.g. Ax, ex respectively). The output contains terms from

the multiplication of the two inputs and a term (ex ) that represents any error

4
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in this process.

Ax +e -> 2
x A xy + A(xe + ye ) + e e + e

Ay +e -- y x x y xy

Y
A(xy + xe + ye ) + e e + e

Figure 4. Multiplier Response. 
y x xY xy

The basic principle of error detection using AN codes is that valid codevords

are multiples of the generator (A). An error can be detected if it changes a

* codevord into a value that is not a multiple of A (not a codevord). Consider-

ation of the multiplier output thus reveals the folloving facts:

a) faults in the multiplier (e ) are detectable (provided the
xy

associated errors are not multiples of A).

b) if only one input is in error (i.e. one of •x , ey is zero) then

the error in the other input is masked since it appears as a

multiple of A.

c) if both inputs are in error this fact can be detected through the

term exey. Error correction will not be possible because the

individual errors (ex, e y) cannot be recovered from their

product.

It is easy to see that the above coding scheme vill mask (the effects of) a

single fault at the input to a multiplier. Adders do not mask faults so if this

multiplier is part of a netvork consisting of just additions and multiplications

then any single fault occurring before the last multiplier vill be masked. Only

single faults occurring in this multiplier or in any of the subsequent adders

will be detectable.

Double faults are detectable provided they occur in such a way as to appear

at the input to the same multiplier. Hovever at the output of the multiplier,

the only detectable effect of a double fault is the same as that of a single

fault. Thus this common multiplier must be the last in the netvork or else the

double fault vill be masked. As adders do not mask faults, detectable double

faults can be located at points distant from the final multiplier provided the

paths to that multiplier involve only adders.

The usual assumption is that a single fault is more probable than many

faults. Thus the coding scheme described here is somewhat poor, in general, as

it masks nearly all of the most probable faults (single faults) and most of the

next most probable ones (double faults).

'. o € . .. . .. .
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3. 20 Dffr8CrN CODES FME NULTIPLICATION

In section 2 we have shoved that the only non-separable code that commutes

with both addition and multiplication is some what poor because of error masking

in the multipliers. Thus it is not possible to have a single code that works

well for both adders and multipliers. The AN-codes work well for addition, so it

is interesting to ask what form a non-separable multiplication-preserving code

must take if it is not to mask errors in this way. In this way it may be poss-

ible to either to protect a multiplier, which is a more complex circuit than an

adder, against errors or construct some sort of dual code scheme for arithmetic

circuits.

Although we refer to the conventional arithmetic multiplication operation

throughout this paper, it should be borne in mind that there are other

"multiplication" operations. It is possible (181 to think of the convolution

operation as the multiplication of two polynomials. Indeed Redinbo (191 has

suggested the use of non-separate error correction codes to construct a fault-

tolerant FIR Filter. A BCH code is used since such codes are conveniently

described using the algebra of polynomials. As BCH codes are addition preserv-

ing, Redinbo used the "one-sided" approach outlined above. In a later paper [201

he suggests an Improvement which is effectively the same as using a residue
2

(separate) code

In the following we derive various necessary conditions on the form of a

multiplication-preserving code. Suppose the coded form of x is c(x) and consider

two values x, y. The product of the two codevords c(x), c(y) has to be the

encoded form of the product of the two initial values:

I) c(x)c(y) - c(xy) V x,y.

If one of the inputs was in error then ideally this ought to be detectable at

the output of the multiplier i.e. the output ought not be a valid codevord. Thus

another condition on the code is

II) c(x)v t C if V t C, V x.

where C is the set of codewords.

The second condition above ensures that if one of the inputs is in error then

the output of the multiplier will also be in error (i.e. no error masking). The

necessity of this condition may, at first, appear to be founded solely on the

requirement that the code be able to check for input errors as well as for

errors generated by the multiplier itself. Condition II can, however, be viewed

2. The correction factor that is passed between the information and check parts is
in fact not necessary. Vithout this correction the encoding is exactly the same
as a residue code modulo g(x), which is known to have the same error protection
ability as the original non-separate code (171 section 5.3).

6
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as representing the ability to detect systematic errors within the multiplier.

If a fault occurs in the control circuitry of a 'shift and add' type multiplier

(say) then the effect of this fault will be the same as if the relevant input
(usually designated the multiplier or coefficient) was in error. Hence if the

code does not satisfy condition II, this type of error will be undetectable and

the code's error-detecting ability correspondingly weak.

It is relatively easy to see that the AN code does not satisfy condition II.

The next, least-complex form of encoding function to try is, perhaps, c(x) Ax

* + B (i.e. an AN+B code [71).

4. A+ CamS

Ve use the following notation:

if a divides b we write alb,

the greatest common divisor of two integers a, b is (a,b),

the least positive residue of a modulo b is ((a))b ,

Consider the usual setting for an arithmetic code where:

the data is taken from the ring Zn,

and the codewords belong to the ring Z• , where nim.

Let the encoding function be c(x) - Ax + B,

so that c(x)c(y) = A2xy + AB(x+y) + B
2

whereas c(xy) =Axy + B.

In order to satisfy the condition I we require that A and B satisfy the

following equations:

A2  A, B2 - B, AB - 0.

Clearly A = 1 is a possibility, but this then implies that B = 0 which does not

lead to a useful code. This is not the only solution, however, since in Z there
2exists an idempotent element A (i.e. A = A) whenever m is factorizable as

a = ab, where (a,b) - 1 (see appendix). In this case it turns out that not only

is

A. ((a- ))b a

an idempotent but also that

B ((b )b
3 a

is one as well. Clearly

- ((a-1 ))b((b-1 ))aab a 0 MOD a,

since ab - a. So that provided m is factorizable in this fashion we can

construct a code that satisfies condition I of section 2.

The ability of an AN+B code to detect errors, in a particular variable, is

3. NB. B - ((l-A))m, see appendix.
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exactly the same as that of the AN code ([71 section 4.1) i.e. it can detect any

error vhose residue modulo A is non-zero. Its ability not to mask errors at the

input to a multiplier (condition II) can be seen as follovs. Let e be an error:

(Ax+B + e)(Ay+B) - A(x+e)y + B + Be

vhere ve have used the facts that A and B are idempotents and that AB . 0.

Clearly the right hand side of the above equation vill not be a codeword

provided that

Be A 0 MOD m

or, since m . AD,

e A 0 MOD A.

Hence all detectable input errors (i.e. e 0 0 mod A) are still detectable at the

multiplier output.

Tables 1 and 2 list some examples of idempotent AN+B codes that can be

derived from the first fev, knovn, useful AN codes. Table 1 lists the AN code

generator (A'), the data ring modulus (n), the code ring modulus (m), the

minimum distance (dm ) of the AN code, and hence the AN+B code, and the tvo

idempotents (A, B). Table 2 lists a similar set of parameters for codes based on

the single-error-detecting (dm.2 ) AN codes vith generator A'-3.

In the course of compiling tables 1 and 2 it vas noted that the majority of

the AN codes considered satisfied the conditions (above) for the existence of an

associated idempotent AN+B code.

8



A' n d A B

9 7 26 -1 2 36 28

11 93 210-1 2 187 837

11 3 2 +1 3 22 12

13 315 212-1 2 1261 2835

13 5 26 +1 3 26 40

19 13797 218-1 2 82783 179361

19 27 29 +1 3 190 324

23 182361 222-1 2 729445 3464859

23 89 211-1 3 713 1335

29 9256395 228-1 2 259179061 9256395

29 565 214+1 3 1131 15255

37 7085 218+1 3 14171 247975

43 3 27 +1 4 43 87

45 91 212-1 3 4005 91

47 178481 223-1 3 5711393 2677215

51 5 28 -1 4 51 205

53 1266205 226+1 3 3798616 63310250

61 17602325 230+1 3 299239526 774502306

67 128207978 233+1 3 7179646769 1410287823

75 13981 220-1 3 405450 643126

87 3085465 228-1 3 80222091 188213365

89 23 211-1 4 1335 713

93 11 210-1 4 837 187

153 215 32895 4 7956 24940

185 1417 218+1 4 66600 195546

217 151 215-1 4 29295 3473

267 15709 222-1 4 2764785 1429519

315 13 212-1 4 2835 1261

351 23905 8390655 4 7936461 454195

353 25249 8912897 4 6564741 2348157

3937 8727391 235-1 3 10586325284 23773413476

6141 683 222-1 4 3494229 700075

6223 337 221-1 5 1549527 547625

13797 19 218-1 6 179361 82783

18631 1801 225-1 5 33014132 540300

25575 41 220-1 6 230175 818401

55831 601 225-1 7 7034706 26519726

9



69615 241 224-1 4 11347245 5429971

178481 47 223-1 8 2677215 5711393

182361 23 222-1 8 3464859 729445

256999 2089 229-1 6 237467076 299403836

486737 1103 229-1 7 66682969 470187943

2304167 233 229-1 8 232720867 304150045

2375535 113 228-1 6 71266050 197169406

3243933 331 230_1 6 363320496 710421334

9256395 29 228_1 10 9256395 259179061

Table 1. Codes Based on AN Codes.

n m A B

5 15 6 10

85 255 171 85
341 1023 342 682

5461 16383 10923 5461
21845 65535 21846 43690

349525 1048575 699051 349525
1398101 4194303 1398102 2796202

22369621 67108863 44739243 22369621
89478485 268435455 89478486 178956970

1431655765 4294967295 2863311531 1431655765
5726623061 17179869183 5726623062 11453246122

Table 2. Single-error Detecting Codes based on A' 3.

10
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5. FAULT TOL*MRmT NULTIFIJU

Following standard coding theory 171, ye define an "error" to be a non-zero

difference between a variable's actual value and the correct one. The term

"fault" is used to mean a physical failure which then results in an error, in

one or more variables.

In order to relate error values to faults several assumptions must be made.

Not only must an architecture be specified but the relative sizes of the

components and faults have to be known. This is because it is, ultimately, the

faults not the errors that we must guard against. Clearly a process with small

enough feature size may result in a large percentage of the entire circuit being

damaged by a single fault and thus produce a large error. Here we consider a

relatively standard, ripple multiplier (see figure 5). Specifically, the mult-

iplier under consideration is a parallel, asynchronous, bit-level circuit

containing no broadcast lines. It is assumed that a fault will only affect a

single processing element (PE). Faults in the data lines can be subsumed in to

the set of faults of a PE, and thus the data lines can be considered fault free.

Another parameter that has to be specified is the number of faults that are

expected to occur in the circuit. Here we choose to specify this value not in

exact numbers but rather as a probability that a single PE will fail. Further it

is assumed that the failure mode of a PE is such that some of the outputs may

still function correctly. This approach allows for a complete variation from the

situation of a masked fault to one where every PE output is in error.

There is only one type of PE in the chosen multiplier, consisting of a bit

multiplier and input-data buffer as well as a bit-adder. Following the standard

theory of arithmetic error-detecting codes (7], it is easy to see that if the

adder circuitry, or associated interconnections, of any PE should fail then the

multiplier output will contain an error of at most weight two. This is because

any PE with a faulty adde- can produce at most two erroneous outputs (the sum

and carry) which will propagate undisturbed to the final output. If more than

one PE fails (n say) in this manner then the output could be in error by up to a

weight of 2n, subject of course to a maximum weight of half of the vordlength

(see appendix, subsection 11.5).

The PE's can also exhibit two other faults: the bit multiplier and the input-

data buffer can fail. The former will produce a final error of weight one. The

latter, however, has a more wide ranging effect. If a FE passes on, to its

neighbour, an incorrect data value then this neighbour and all subsequent PE's

in that chain may also produce errors (of weight one). Vhether or not these

errors actually occur depends upon the input data: a multiplicand bit with a

(correct) value of zero clearly will mask an error in the corresponding multip-i 11



Her bit or vice versa. Thus the veight of the error in the multiplier output is

a function not only of the number of faults but also of the position of the

faulty PE's and the data applied to the circuit.

At first sight, this implies that a faulty input data line in the PE in the

top rov/column could produce an error of veight b(b-l)/2 : assuming b PE's per

rov/coluan (and hence b bit input vords). Bovever, by design (see section 4), up

to d -l errors in the input data (and hence at least one) can be detected at the

output. This apparent contradiction is due to the fact that the input data is

coded and therefore not every bit pattern can be applied to the circuit. A

simulation of the circuit is, at present, the only vay to discover exactly vhat

will happen.

12



a.0

5(a) Modulo 2'- Multiplier

5(b) Conventional Multiplier

Figure 5. Ripple Multiplieors.
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6. SINUIATION P I TS

The fault tolerant multiplier vas simulated by computer program in the

folloving mamner: at each iteration random inputs yore chosen, encoded in the

AN+B code and applied to the multiplier routine. The latter cycled through each

PE in turn calculating the various outputs. "Faulty* PE's vere chosen at random,

vith a specified probability. The outputs (single bits) of a "faulty* PE yere

chosen at random in order to simulate all possible types of faults vithout

having to specify the detailed circuitry of a FE. At the end of an iteration,

the possibly erroneous result vas compared to the correct value and a table of

statistics updated. In one run the above procedure was repeated many times so

that the variances of the estimates became acceptably small.

For the purpose of making a comparison betveen an AN.B coded multiplier and a

more conventional fault tolerant scheme, a particular task must be considered.

This is because a comparison betveen the scheme presented here and a DMR scheme

is not straight forvard. In the former case it is necessary to build a modulo

2n-I multiplier vhereas the latter case only requires a conventional one.

The problem considered here is simply that of multiplying two integers together.

Figure 5 shows the sort of architecture that was considered for the conventional

multiplier. The method of simulation of the DHR scheme vas essentially the same

as for the AN B code scheme.

Figure 6 shovs a plot of the fault detection rate for various sizes of

multipliers. Table 3 list the codes used and various of their parameters: the

nomenclature is the same as for table I vith the addition of bn and bn vhich are

the base 2 logarithms (i.e. equivalent number of "bits") of n and m

respectively. The detection rate plotted does not include non-active faults i.e.

those faults that are masked by virtue of the data values. For comparison the

detection rates for a fault tolerant multipliers, of comparable size, using

double modular redundancy (DNR) are also shown. Clearly the DMR schemes have

consistently better detection rates, hovever this is not the only parameter that

matters. Fault tolerance is bought by making the circuit redundant. Thus an

equally important factor is the increase in circuit size.

figure 7 is a plot of percentage increase in area of the multiplier vhen the

codes of tables 5 and 6 are used. In calculating the increase in area, the base

line was taken to be a conventional multiplier of a suitable size to handle the

data range of the AN+B code. Thus both multipliers have, after any necessary

decoding, the same sized output vordlength. The AN+B coded multiplier has to be

a modulo 2n-1 multiplier so its input vordlength is the same as the output

vordlength. In the conventional case the input is, of course, half the size of

the output.

14
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A B A' n d* bn  b. Increase (2)
vordlength area

10923 5461 3 5461 16383 2 12.41 14.00 12.77 232.75
1398102 2796202 3 1398101 4194303 2 20.42 22.00 7.76 203.65

89478486 178956970 3 89478485 268435455 2 26.42 28.00 6.00 194.45
405450 643126 75 13981 1048575 3 13.77 20.00 45.23 451.27

80222091 188213365 87 3085465 268435455 3 21.56 28.00 29.89 341.31
2764785 1429519 267 15709 4194303 4 13.94 22.00 57.83 550.98

Table 3. Parameters of Simulated Codes.

The data presented in figure 7 does not take into account any of the

circuitry needed to encode the data or detect an error at the multiplier output.

The dashed line at 100 represents the increase in area of a D R scheme (again

ignoring the checking circuitry). The implication of these results is that, for

the situation considered here, the DMR scheme is better than the AN+B code one

if a dedicated fault tolerant multiplier is required. Non-intrusive real-time

testing can still only be done vith a "test data" type scheme such as the AN+B

code one. The advantage of the AN+B code method over more conventional methods,

vhere the test data is prepared before hand, is that generation of the test data

and subsequent error detection is much easier.

It is interesting to note that the detection rate rapidly approaches 100 as

the minimum distance increases. Indeed a minimum distance of 3 vould appear to

be quite adequate.
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7. CaNCIAISioN
One way to reduce the probability of a fault in the encoding/decoding

circuits of an arithmetic error detection/correction code is to ensure that the~arithmetic expression is more complex than the coding circuitry (algorithm

fault-tolerance). In order to do this the code must preserve multiplication as
vel as addition. Ve have characterised non-separate codes that satisfy this

requirement. The result is found to be consistent with the previous result about

addition preserving codes.

A study of the error protection ability of this type of code shows that they

are in fact rather bad at detecting errors in such arithmetic expressions. This

leads us to believe that fault tolerant arithmetic, as described above, Is most

likely to be achieved by means of component-level fault-tolerance or the use of

a separate coding scheme (residue codes).

Ve have also derived two conditions which an arithmetic code must satisfy in

order to be used to protect a multiplier from errors. The first being the

obvious statement that the code must preserve the operation of multiplication.

The second requirement stems from the desire to be able to check for systematic

errors and erroneous inputs.

The simplest code that satisfies the two conditions is shovn to be an AN+B

code where both A and B are idempotents. The necessary conditions for the

existence of these idempotents was given and a list of examples produced. Such a

code was shown to be able to detect all errors that are not a multiple of the

idempotent A.

A specific example of a ripple multiplier was considered. It was shown that

this type of code does surprisingly well in detecting errors. Indeed they can

detect errors well passed their minimum distances with a high degree of success.

As a result the fault tolerant multiplier based on this method could detect

upwards of 95X of all active faults even if a significant number of PE's have

failed. In comparison to an established technique like DHR, the use of an

error-detecting code to achieve fault-tolerance was shown not to be cost-

effective mainly due to a larger increase in circuit area.
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11. APPDIX

11.1. Multiplication/addition Preserving Arithmetic Codes
A multiplication/addition preserving arithmetic code is a redundant encoding

of a finite set of integers (Zn say) such that their arithmetic structure is

preserved. It is usual [7) to consider the arithmetic to be modulo the integer n

(n-2b  for tvo's complement, n2 b-l for one's complement) in which case the set

Zn can be considered to be a ring [17). As the encoded integers are to be manip-

ulated by a computer, or similar dedicated hardware, they too will be elements

of some integer ring (Zm, m>n, say). The encoding function of the code will thus

be a one-to-one and into ring homomorphism (a ring monomorphism).

To prove our main result (theorem 11.1.3) we require two well known results:

Lema 11.1.1 (See Hartley & Davkes 121) p20.)

If #: R # S is a ring homomorphism then

a) *(R)-((r)Ir]R) is a subring of S.

b) let Ker # - (reRI*(r)-Os).

is a monomorphism iff Ker # - [OR)

Theorem 11.1.2

If R is a subring of Zn then R is a principal ideal.

Proof:

As R+ is an additive subgroup, for q,gcZn we have

q

((qg)) n " ((Z))n e R

i-1

and hence R is an ideal of Zn.

Let g be the smallest non-zero member of R. For xeR let

x . qg + r O<r<g.
Then ((r)) n - ((x - qg))n C R

since x, ((qg))n t R.
Because g is, by definition, the smallest non-zero element of R we must

have that r - 0 and hence R is generated by g.

21



With the aid of these results ve may nov prove

Theorem 11.1.3

If +: Zn - Z, vhere m>n, is a ring "onomorphism then

#(x) - Ax and A in an idempotent in Z3 .

Proof:

As * is a ring homomorphism, by virtue of lemma 11.1.1(a)
and theorem 11.1.2, +(Zn) is a subring of Z and hence a

principal ideal.

Let acZa be a generator of the ideal:

i.e. (Zn ) - (ax I xcZ a).

Nov # is actually a monomorphism hence #(0) = 0 (lemma 11.1.1(b)),

thus #(1) - ay for some non-zero ycZa.

Then as # is addition preserving ve havex x
(x) . 4 - E #11) - x#(1) - xsy.

i.e. #(x) - Ax

vhere A - ay = #(I).

But # is also multiplication preserving

i.e. *(x)4(z) = +(xz) I x,zCZn,

or A 2xz - Axz V x,zeZ n.

In particular let x.z-1, then

A2 .A.

Hence A is an idempotent.

By construction, the encoding function for an addition/multiplication

preserving arithmetic codes satisfies the conditions of theorem 11.1.3. Thus ve

have shovn that such codes have to be idempotent AN codes. This is not a totally

unexpected result as it has long been knovn (1221 section 14.3) that a non-

separate addition preserving code must be an AN code.

11.2. Idempotents

Definition:

Let R be a ring, then e C R is an Idempotent if

e . e.

Notation:

The (principal) ideal generated by an element J of a ring I is <J>, i.e.

<J> - (rjlrell.
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In a ring R, the residue class congruent to rCR, modulo an ideal J, is

denoted by Il, i.e. [r] (sis-rcJi.

The ring of residue classes (or quotient ring) of a ring R modulo an

ideal J is denoted by R/J.

Theorem 11.2.1

Let K be a Euclidean domain. If j,g C K are such that glj and

(g,j/g) -1 then, in the quotient ring R . K/<j>, the ideal generated by the

residue class [g] can be generated by a unique idempotent.

Proof: (cf. (9) ch.8)
Define h . Jig. If (h,g) = 1 then, by the Euclidean division

algorithm, there exists p, q c K such that

pg + qh - 1

and hence, in R,

Ipg] + lqhl - Ill.

Consider Iv] = [pg] c R,

Ivl(Iv] + lqhl) - [v

i.e. [y]2 + [pgl[qh] = lvi.

Now lpg)lqhJ = Ipgqh] = lpqgh] = [pqjj

since multiplication is commutative in a Euclidean domain.

But by definition of an ideal,

pqj £ <j>

hence [pqjJ 1 (0].

So that y]2  [y]

and (v] is an idempotent.

Now as [yj = (PJ[g]

then <lvi> C <Ig]>,

but (g]ty] . (g](fl] - [qh])

- ig) - (qj]

- [gl

i.e. <(g> C <(vi>
Thus <Ig]> - <[v]>,

and lv| generates the ideal.

The idempotent lv| is unique, for if If) e R is another idempotent that

generates <[gi> then
Ivi a <if)>

i.e. li) - iallf] for some [a] c R
Thus (vili- lalilf - (ailfl - lvl.
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Similarly [f] C <[Y]>

i.e. [f] = [bI[y] for some [b] c R

thus [y][fJ - [b]iy]2 - [b][Y]- [f].

Hence (Y] = [f].
11

As an example let K be the ring of integers, if j - 65 the ideal <J> is the

set of integer multiples of 65 and the quotient ring K/<J> is the ring of

integers modulo 65 (i.e. Z6 5 ). Nov consider the ideal of Z6 5 generated by g - 13

(i.e. all integers that are multiples of 13 modulo 65):

<g> = (13,26,39,52,65m0}.

We have 65/13 . 5, and as 13 and 5 are relatively prime ye can find integers p,

q such that 13p + 5q . 1.

In fact p = 2, q = -5 and hence y - 2*13 = 26, and we have

<26> = (26,52,78m13,104n39,130m0) - <g>,

and (26)2 . 676 . 26 MOD 65.

11.3. Idempotent Generators for BCH Codes

The codevords of a BCH code form an ideal in GF(q)[x/<xn-_i>, for (q,n) = 1,
ngenerated by g(x), a factor of x -1. It is well known that the roots of g(x)

nconsist of conjugate sets ([9] p199) and hence that (g(x),(x -1)/g(x)) - 1. Thus

the conditions of the above theorem hold and the code can be generated by the

idempotent r(x) = ((p(x)g(x)))xn_1
where p(x) a (((g(x)) ))(xnl)/g(x).

11.4. Idempotent Generators for AN Codes

An AN code is an ideal in Zm, generated by A', a divisor of .. Thus provided

that (A',m/A') = 1, the code can be generated by the idempotent
A - ((pA')) 3

where p = ((A'-I))m/A,.
The condition that A' and m/A' be relatively prime does not hold for all

useful AN codes. It is, however, true for a high percentage of published values

(see tables 1 and 2).

11.5. Naximm Weight n-Bit Number

It is well known [7] that the arithmetic weight of a number is the same as

the Haming distance between the binary representations of the number and three

times the number. Nov if x is an n-bit number then 3x is possibly an (n+2)-bit

number. Nov as 3 is an odd number, 3x is odd or even as x is odd or even and

thus 3x and x can differ in at most n+l places. Further more it can be shown
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that 3x and x cannot differ in two consecutive places, so that the maximum

weight of an n-bit number is

n/2 if n is even

(n-l)/2 + 1 if n Is odd.

11.6 Binary AN Codes

A binary AN code is an arithmetic coding scheme that represents an integer N

by the radix 2 representation of the integer AN, for some integer A. Although

codes can be constructed for the (infinite) set of all integers, most interest

is centred on finite integer rings and especially ones vhere the resultant

arithmetic is either vrap-around carry or borrow.

The main problem for the theorist is to either a) be able to calculate the

minimum distance of the code for given A; or b) calculate a value for A which

gives a required minimum distance. A lot of york has been done towards these

ends but as yet no succinct results are available. It is still the case that a

(computer) search has to be done to get the answers, although most of the

results so far obtained are useful in reducing the amount of searching required.

This section contains a list of the first few, known, AN codes along with

various parameters. Also included are all pertinent theorems to date.

The table of AN code generators (table 4) includes the following parameters.:

A: the code generator.

H: the modulus of the information ring (i.e. 04<M).

AM: the modulus of the code ring (i.e. O<AN<AM), including (where

relevant) an expression of the form 2 n±1.

dm: the minimum distance of the code.

s,o: the idempotent generator a and its dual 0 (if any).

NB. 1. A code with A=3 can detect single errors for M-(2 n-)/3 and any

even n.

2. Some of the parameters for codes with dm 4 are missing. The existence

these codes is mentioned in Szabo & Tanaka [221 but no further details

are given. There is no theorem to fill in the missing details: a

computer search would be required.

3. Values for idempotent generators, if any, can only be calculated for

those codes that have an explicit value for A and M.
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A N AN d a

3 5 15 (2 -1) 2 6 10

3 21 63 (261) 2

3 85 255 (2 -1) 2 171 85

3 341 1023 (2101) 2 342 682

3 1365 4095 (2121) 2

3 5461 16383 (214_1) 2 10923 5461

3 21845 65535 (216_1) 2 21846 43690

3 87381 262143 (2181) 2

3 349525 1048575 (2201) 2 699051 349525

3 1398101 4194303 (2221) 2 1398102 2796202

3 5592405 16777215 (224_1) 2

3 22369621 67108863 (226_1) 2 44739243 22369621

3 89478485 268435455 (2281) 2 89478486 178956970

3 357913941 1073741823 (230_1) 2

3 1431655765 4294967295 (232_1) 2 2863311531 1431655765

3 5726623061 17179869183 (234-1) 2 5726623062 11453246122

9 7 63 (261) 2 36 28

11 3 33 (25+1) 3 22 12

11 93 1023 (2101) 2 187 837

13 5 65 (26+1) 3 26 40

13 315 4095 (212-1) 2 1261 2835
919 27 513 (2 +1) 3 190 324

19 13797 262143 (218-1) 2 82783 179361

21 3 63 (26_1) 3

23 89 2047 (2111) 3 713 1335

23 182361 4194303 (2 -1) 2 729445 3464859

29 565 16385 (214+1) 3 1131 15255

29 9256395 268435455 (2 28-1) 2 259179061 9256395

37 ml.86E9 ,687E10 (2361) 2 (NB:3)

37 7085 262145 (2 18+) 3 14171 247975

43 3 129 (2+1) 4 43 87

45 91 4095 (212_1) 3 4005 91

47 al.49E12 w704£13 (246_1) 2 (NB:3)

47 178481 8388607 (2231) 3 5711393 2677215

51 5 255 (28-1) 4 51 205

53 85013 45015 (252_1) 2 (14B:3)

53 1266205 67108865 (226+1) 3 3798616 63310250

61 a189E16 *115318 (260_1) 2 (NB:3)

61 17602325 1073741825 (230+1) 3 299239526 774502306
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A m AN d

67 128207978 8589934593 (2 33+1) 3 7179646769 1410287823

71 4-8428 " -344910 (235-1) 3 (NB:3)

75 13981 1048575 (220-1) 3 405450 643126
79 *696E9 =550E11 (239-1) 3 (N9:3)

83 265810 ,220E12 (24+1) 3 (NB:3)
87 3085465 268435455 (2281) 3 80222091 188213365

89 23 2047 (2111) 4 1335 713

93 11 1023 (210-1) 4 837 187

101 al.11E13 1-1315 (2 50+1) 3 (!1:3)

103 2-19E13 2-25S15 (2 5+1) 3 (NB:3)

105 39 4905 (2121) 4

153 215 32895 4 7956 24940

185 1417 262145 (2 +1) 4 66600 195546

217 151 32767 (2151) 4 29295 3473

267 15709 4194303 (222_1) 4 2764785 1429519

315 13 4095 (2121) 4 2835 1261

351 23905 8390655 4 7936461 454195

353 25249 8912897 4 6564741 2348157

357 3 1071 5

357 46995 16777216 (224_1) 4

393 4 (NB:2)

547 4 (NB:2)

555 4 (!1:2)

1197 219 262143 (2181) 6

3937 8727391 34359738367 (235-1) 3 10586325284 23773413476

4161 63 262143 (218-1) 3

6141 683 4194303 (222_1) 4 3494229 700075

6223 337 2097151 (221_1) 5 1549527 547625

13797 19 262143 (218-1) 6 179361 82783

18631 1801 33554431 (2251) 5 33014132 540300

25575 41 1048575 (2201) 6 230175 818401

j 55831 601 33554431 (225_1) 7 7034706 26519726

69615 241 16777215 (224_1) 4 11347245 5429971

178481 47 8388607 (223_1) 8 2677215 5711393

182361 23 4194303 (2221) 8 3464859 729445

256999 2089 536870911 (229_1) 6 237467076 299403836

486737 1103 536870911 (2291) 7 66682969 470187943

2304167 233 536870911 (2291) 8 232720867 304150045

2375535 113 268435455 (228_1) 6 71266050 197169406
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A H AM d £

3243933 331 1073741823 (230_1) 6 363320496 710421334

9256395 29 268435455 (228-1) 10 9256395 259179061

s4.84U 71 I3-44E10 (235-1) 12 (NB:3)

=1"86E9 37 I8"87E10 (236_1) 12 (N3:3)

mB-50E13 53 s45EO15 (252_1) 17 (NB:3)

u1.89E16 61 =1-15B18 (260-1) 20 (NB:3)

Table 4. The First Fey Knovn AN Codes

11.6.1 ME Code Theorems

The proofs of the folloving theorems can be found In Rao[7] or Hassey and

GarciaJ23.

7.1 For a radix r code, da > 2 if (A,r) 1, and A > r.

7.2 For odd A, H2 (A,3) = (2 k ±l)/A vhere
4 k is the smallest integer such that

A I (2 k1).
7.3 If (A,r) = 1 then k I er(A) or5 er(A)/ 2 as er (A) is odd or even

respectively.

7.4 If A is an odd prime and 2 is primitive in GF(A)

then H2 (A,3) - (2 (A-1)/2.1)/A.

If A is an odd prime and 2 is not primitive in GF(A)

then M2 (A,3) - (2 (A-1)/
2 -1)/A.

7.5 Let A - plP 2 be the product of tvo distinct primes. If et - e2 (Pt) 1-1,2 and

L -<e1 ,e2 > then

M2 (A,3) - (2L/
2 +1) if (e1 ,e2 ) is even and both eI/d and

e2 /d are odd,

- (2L-1) othervise.

7.6 (B Codes) If B is a prime and 2 is primitive in GF(B) then

A - (2(B-1)-1) * do . L(8+l)/3J.

If -2, but not 2, is primitive in GF(B) then

A - (2(B-1)/2_1) * dm - L(B+1)/6J,

but then A = (2(B-1)-1) Is a repetition code vith dm . 2L(B+1)/6J.

23.1 If A (odd) > I then d -> 3 iff either a) e2 (A) is odd or b) e2 (A) is even

but A 
/(2 

a1).

23.2 If A = 3 and N - (2n- )/3 for n even, then do = 2.

4. N (A,d) is the smallest integer such that the number A*M r(A,d), in radix r,
has 6eight < d, hence the radix-r code vith generator A has minimum distance d
provided the data is taken from Z .
5. er (A) Is the exponent of r modUlo A i.e. r a I NOD A.
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